

Vault 101

This documentation is structured following the Divio’s documentation system [https://documentation.divio.com/].

Contents:

	Tutorials

	How-to guides

	Reference guides

	Explanation

	Changelog

Indices and tables

	Index

	Module Index

	Search Page

Tutorials

For more information see Tutorials [https://documentation.divio.com/tutorials/].

How-to guides

Here you will find short recipes to solve…

For more information see How-to guides [https://documentation.divio.com/how-to-guides/].

	Cookies disclaimer

	Wait for Elasticsearch to be ready in Docker/Compose

Cookies disclaimer

This document describes how to add a Cookies disclaimer box to a project. The source
code for this how-to is available in GitHub [https://github.com/kingsdigitallab/vault-101/tree/main/components/cookies].

	Add the HTML snippet to every page on the project.

<div id="cookies-disclaimer">
 <p>
 We use cookies to track usage and preferences in accordance with our
 Privacy & Cookie Policy
 </p>
 <p>
 <button aria-label="Dismiss alert" type="button">I understand</button>
 </p>
</div>

	Add the JavaScript function to the project.

function cookies() {
 const disclaimer = document.querySelector('#cookies-disclaimer')

 if (localStorage.getItem('cookies-accepted')) {
 hideCookiesDisclaimer(disclaimer)
 return
 }

 const button = disclaimer.querySelector('button')

 button.addEventListener('click', (event) => {
 localStorage.setItem('cookies-accepted', true)
 hideCookiesDisclaimer(disclaimer)
 })
}

function hideCookiesDisclaimer(disclaimer) {
 disclaimer.className = ' hidden'
}

	Call the cookies() function from the main project script.

	Add a Privacy and Cookie Policy [https://kdl.kcl.ac.uk/privacy-policy/] to the project.

Wait for Elasticsearch to be ready in Docker/Compose

The Django [https://www.djangoproject.com/] service dependencies set with depends_on [https://docs.docker.com/compose/compose-file/compose-file-v3/#depends_on] in Docker compose do not wait
for the elasticsearch [https://www.elastic.co/elasticsearch/] service to be ready, they only wait until the service is
started.

To guarantee that elasticsearch is ready add the following snippet to the Django
entrypoint script:

if [-z "${ELASTICSEARCH_HOST:-}"]; then
 export ELASTICSEARCH_HOST="elasticsearch:9200"
fi

elasticsearch_ready() {
python << END
import sys

from elasticsearch_dsl import connections
from elasticsearch.exceptions import ConnectionError

try:
 c = connections.create_connection(hosts=["${ELASTICSEARCH_HOST}"], timeout=10)
 c.info()
except (ConnectionError, ConnectionRefusedError) as e:
 sys.exit(-1)

sys.exit(0)
END
}
until elasticsearch_ready; do
 >&2 echo 'Waiting for Elasticsearch to become available...'
 sleep 1
done
>&2 echo 'Elasticsearch is available'

Reference guides

For more information see Reference guides [https://documentation.divio.com/reference/].

	Hydra/JAMStack

	Useful web map service providers for Leaflet.js and OpenLayers

Hydra/JAMStack

Modules

Projects based on this architecture will have at most three main modules:

	cms (backend)

	etl (data processing module)

	frontend

Set up as a monorepo [https://en.wikipedia.org/wiki/Monorepo] using the npm workspaces [https://docs.npmjs.com/cli/v8/using-npm/workspaces] setting in package.json:

"workspaces": [
 "cms",
 "etl",
 "frontend"
]

Directory structure

	.envs/ environment files for each of the modules, .example files should be under
version control to help setting up new instances

	.cms.example

	.etl.example

	.frontend.example

	.github/workflows CI/CD pipelines

	cms/ the cms module

	docker/ files for setting up Docker provisioning, as needed

	local/module_name/*

	production/module_name/*

	etl/ the data processing module

	frontend/ the frontend module

	.eslintrc.json to specify the linting rules

	.nvmrc to specify the node version used to run the project

	.prettierignore to specify which files should not be automatically formatted

	CHANGELOG.md [https://keepachangelog.com/en/1.0.0/] to record project changes

	LICENSE

	README.md

	docker-compose.override.yaml.example Docker compose file for local overrides [https://docs.docker.com/compose/extends/#multiple-compose-files],
should be copied and renamed without .example

	docker-compose.yaml Docker compose file

	package.json

Note

Docker is only needed if using the cms, and potentially etl modules. If the project
only has the frontend module Docker should not be needed.

The highlevel directory structure for each module/workspace, by default, follows the
standard for JavaScript packages:

	public/

	src/

	tests/

	package.json

Note

This directory structure may not apply to all the workspaces, for example, if using
Directus [https://directus.io/] for the cms module the directory structure should follow the structure of
the Directus project, which by default doesn’t need a src directory.

Tooling

These are used to guarantee consistency across projects and should be set up at the root
of the project:

	eslint [https://eslint.org/] to find issues in the code set up with the recommended settings and using
prettier for formatting.

{
 "env": {
 "es6": true,
 "node": true,
 "jest": true
 },
 "extends": [
 "eslint:recommended",
 "prettier"
],
 "parser": "@babel/eslint-parser",
 "parserOptions": {
 "requireConfigFile": false
 }
}

	.nvmrc to specify a node version

	prettier [https://prettier.io/] for code formatting

Dependencies

"devDependencies": {
 "@babel/eslint-parser": "^7.18.2",
 "@babel/eslint-plugin": "^7.17.7",
 "eslint": "^8.17.0",
 "eslint-config-prettier": "^8.5.0",
 "prettier": "^2.6.2",
 "prettier-plugin-sort-imports": "^1.7.0",
 "simple-git-hooks": "^2.8.0",
 "vscode-langservers-extracted": "^4.2.1"
}

Automation

Both linting and formatting should be run as a pre-commit hook set up in package.json,
by using the simple-git-hooks [https://github.com/toplenboren/simple-git-hooks] package.

"simple-git-hooks": {
 "pre-commit": "npx lint-staged"
},
"lint-staged": {
 "*.{js}": "npm run format",
 "*.{json,md,yaml}": "npm run prettier:fix"
}

Scripts

The top seven sample scripts are mostly useful for when one of the modules in the
project uses Docker, they provide a shortcut to interact with the containers.

"scripts": {
 "compose": "trap 'echo Stopped; exit 0' SIGINT; docker-compose",
 "up": "npm run compose up -- --build",
 "down": "npm run compose down",
 "exec": "npm run compose exec ${npm_config_service}",
 "pkg": "npm run exec npm",
 "cms:snapshot": "npm run pkg --service=cms run snapshot:create",
 "cms:snapshot:apply": "npm run pkg --service=cms run snapshot:apply ./snapshots/${npm_config_snapshot}.yaml",
 "lint": "eslint **/src **/tests",
 "lint:fix": "npm run lint -- --fix",
 "prettier": "prettier . --check",
 "prettier:fix": "npm run prettier -- --write",
 "format": "npm run prettier:fix && npm run lint:fix",
 "test": "npm run test --workspaces --if-present"
}

Frontend module

By default the frontend module should be built using 11ty [https://11ty.dev/].

Directory structure

	../.github/workflows/frontend.yaml GitHub pipeline file to build GitHub pages

	.eleventy.js [https://www.11ty.dev/docs/config/] 11ty configuration file

	.env environment file with settings to build the frontend

	_site/ output directory for the built site (not under version control)

	package.json

	public/ contains files that are not used by the build process

	assets/* images, pdfs, etc.

	robots.txt

	src/ input/src directory for the build process

	_data/ global data/collections for the project

	eleventyComputed.js computed fields available to every layout

	config.json settings for the seo [https://github.com/artstorm/eleventy-plugin-seo] plugin and other site metadata

	_includes/ contains layouts, include files, extends files, partials, or macros

	layouts [https://www.11ty.dev/docs/layouts/]/ contains layout templages

	macros/ contains reusable chunks, similar to a function does in programming
languages

	partials/ contains layouts partials/fragments

	assets/

	stylesheets/ SCSS files that will be built by 11ty

Templates

Component-based development for template reuse, one possibility is to use Nunjucks [https://mozilla.github.io/nunjucks/]
macros:

	https://iainbean.com/posts/2020/flexible-components-in-eleventy-with-nunjucks-macros/

	https://www.trysmudford.com/blog/encapsulated-11ty-components/

Warning

11ty supports multiple template languages, ~10! I have settled on Nunjucks because it
seemed that was the language mostly used in 11ty projects. The other reason I have
not used liquid is because the JavaScript implementation is different from the Ruby
one used with Jekyll. One issue I have with it is that both the empty string and
0 are truthy in liquid.

Scripts

Execute them with npm run.

"scripts": {
 "build": "eleventy",
 "dev": "eleventy --serve",
 "debug": "DEBUG=Eleventy* npm run dev",
 "index": "npx pagefind --source _site"
}

Metadata

Post

title: Title of the post
the subtitle field is optional and depends on the project
subtitle: A fancy subtitle
posts can have multiple tags
tags:
post is a default tag
 - post
one tag per line
 - one
spaces are allowed in tag names
 - multiple words
posts can have multiple authors
authors:
id possible use user ids
 - auser
otherwise full names, don't mix both approaches in the same project
 - Aa User
if the post filename starts with the date 2022-11-01_post-title.md, then the date is
optional; the date in the frontmatter has higher precendence
date: 2022-09-07
an execerpt, optional depending on the project
excerpt: Lorem ipsum dolor sit amet, qui minim labore adipisicing minim sint cillum
 sint consectetur cupidatat.
featured image
feature:
image URL
 image: images/IDH_banner.original.jpg
image description
 description: Indigenous Digital Humanities Banner

Lorem ipsum dolor sit amet, qui minim labore adipisicing minim sint cillum sint
consectetur cupidatat.

Plugins

The 11ty website has a list of both core and community plugins [https://www.11ty.dev/docs/plugins/].

Currently used

	eleventy-navigation [https://www.11ty.dev/docs/plugins/navigation/] plugin for creating hierarchical navigation and breadcrumbs

	seo [https://github.com/artstorm/eleventy-plugin-seo] plugin to generate meta tags for improved SEO

	toc [https://github.com/jdsteinbach/eleventy-plugin-toc] plugin to generate table of contents from page headers

Potentially useful

	https://www.11ty.dev/docs/plugins/image/

	https://www.11ty.dev/docs/plugins/i18n/

	https://www.npmjs.com/package/eleventy-plugin-html-validate

	https://www.npmjs.com/package/@quasibit/eleventy-plugin-sitemap

Search

Search can easily be added to an 11ty project by using the pagefind [https://pagefind.app/] package.

Useful web map service providers for Leaflet.js and OpenLayers

Base maps are essential for contextualising spatial data in a web map. However, layer providers often change their terms or their APIs and this can result in a map layer becoming unavailable and leaving a blank base layer.

This page provides 2 options for default map providers that can be used according to their T&Cs allowing that our sites don’t normally drive a huge volume of traffic.

Option 1 - OpenStreetMap

OpenStreetMap provides a tile service with a usage policy detailed here: https://operations.osmfoundation.org/policies/tiles/

NB. This option should not be used if we anticipate heavy traffic, i.e through an app or very busy website.

// By default subdomains denoted by {s} are [a,b,c], and are used to speed up tile loading

newTileLayer = L.TileLayer("http://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png",{attribution:"© OpenStreetMap contributors"})

Option 2 - ArcServer

There are several backdrops that can be selected from the list here: https://server.arcgisonline.com/ArcGIS/rest/services/

The World Streets layer can be used in web maps according to the terms found here https://www.arcgis.com/home/item.html?id=3b93337983e9436f8db950e38a8629af and should be attributed as follows:

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCAN, Esri Japan, METI, Esri China (Hong Kong), NOSTRA, © OpenStreetMap contributors, and the GIS User Community

Tile URL

https://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer/tile/{z}/{y}/{x}

newTileLayer = L.TileLayer("http://server.arcgisonline.com/ArcGIS/rest/services/World_Street_Map/MapServer/tile/{z}/{y}/{x}",{attribution:'World Street Map Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCAN, Esri Japan, METI, Esri China (Hong Kong), NOSTRA, © OpenStreetMap contributors, and the GIS User Community'})

Explanation

For more information see Explanation [https://documentation.divio.com/explanation/].

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/], and this project adheres to
Semantic Versioning [https://semver.org/spec/v2.0.0.html].

[Unreleased] - yyyy-mm-dd

Added

	Cookies component.

	Initial documentation structure.

	How-to: wait for Elasticsearch to be ready in Docker.

Index

Analytics platform

Each project has AWStats [https://awstats.sourceforge.io/] set up by default.

Explanation

For more information see Explanation [https://documentation.divio.com/explanation/].

 XML Schema languages [https://en.wikipedia.org/wiki/XML_schema]

	ODD (TEI,): “One Document Does it all”, is a special TEI document from which documentation and a schema can be derived. ODD can be created with ROMA [https://romabeta.tei-c.org/]

	Schematron (2006, ISO/IEC): rule based validation.

	RELAX NG [http://relaxng.org/] (2001, ISO): more accessible than XSD. Mostly about validation. Note that a RNG schema can contain schematron rules.

	XSD (2001, W3C): XML schema, most widely adopted generally. Also more than just validation.

	DTD (1986, SGML): Document Type Definition, now superseded by the above languages.

IDE validation

	VSCode with Scholarly XML extension will highlight invalid constructs based on RNG. It uses Salve [https://github.com/mangalam-research/salve] JS validator.

Command line validation

	Relax NG: Jing (Java), xmllint (not sure if reliable)

Eleventy SSG for devs

Documentation about how KDL sites are developed using a Static Site Generator called
11ty [https://www.11ty.dev/].

Installing 11ty

You need node.js v16+ & npm installed on your
machine [https://nodejs.dev/download/].

To install 11ty, run the following command from within alice-thornton
folder.

npm ci

Generating the site

To generate the whole static site into the _site folder.

npm run rebuild

To run it as a development server:

npm run serve

Then go to localhost:8080. Each time you modify a
source file, 11ty will automatically rebuild the site and refresh it in
your browser. .

Plugins

See https://www.11ty.dev/docs/plugins/

Recommended by KDL:

	https://www.11ty.dev/docs/plugins/navigation/

Relevant to our projects:

	https://www.npmjs.com/package/eleventy-plugin-find

	https://www.npmjs.com/package/@orchidjs/eleventy-plugin-ids

	https://www.npmjs.com/package/eleventy-plugin-html-validate

	https://www.npmjs.com/package/@vidhill/fortawesome-brands-11ty-shortcode

	https://www.npmjs.com/package/@tigersway/eleventy-plugin-ancestry

	https://www.npmjs.com/package/eleventy-plugin-toc

	https://www.npmjs.com/package/eleventy-plugin-nesting-toc

	https://www.npmjs.com/package/eleventy-plugin-plantuml

	https://www.npmjs.com/package/@quasibit/eleventy-plugin-sitemap

Misc

Add unclassified tip here first so we don’t forget about them, we can relocate them later.

frontend folder contains all the data and code to generate your site:

	
	_includes: contains liquid templates and fragments
	
	frontend/_includes/js: contains serve-side javascript (As opposed to client-side, see below)

	assets: contains all the client-side resources loaded by your web pages (css, js, fonts, node_modules, img); the folder is copied as-is to the site.

	_site: where the site is built by 11ty (this folder is disposable)

	
	_data: global metadata, collections and computed fields
	
	layout.json: points to the default layout for any page (see _includes folder)

	eleventyComputed.js: computed fields available to every page/layout and fragment

	metadata.json: golbal settings for your site

	_build: to deploy using docker or other methods than npm (currently unused)

…

Introduction to editing the web site content

TL;DR

Static web pages are automatically generated every 10 minutes
from Markdown files which you can edit directly on github.com.

Prerequisites

You will need a github account with access to the project repository and
familiarity with basic github operations. More on this in our separate
github starter page.

File formats

Markdown

Files ending with .md are in markdown format [https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax], a simple text-based
notation to format the body of your document for the web. Most of the
content of the site is encoded using markdown files as they are easy
for non-developers to edit. Editors can ignore other types of files.

The Front-matter is an optional section at the beginning of the file
used to define metadata associated with the document, like the title
of the document or its authors. The Front matter starts and ends
with a line consisting of three dashes (—).

Here’s an example of a blog post in markdown:

title: Our first blog post
authors:
 - jsmith
 - jdoe
categories:
 - blog

Introduction

This is an example of a post written
by [KDL](https://kdl.kcl.ac.uk) in markdown...

HTML

Files ending with .html use the HTML5 standard instead of the simpler
markdown language.

Liquid

In both .html and .md files you may see some constructs surrounded by
curly braces. They follow the Liquid notation, which is templating
language to generate HTML or markdown from metadata. You can ignore it
and leave its maintenance to the development team.

{% include 'team.md', team: 'research' %}

Organisation of the editable content

The .md and .html files correspond to individual web pages on the site
and their location in the folder hierarchy match the web path of those
pages.

For instance /about/team.md is the markdown file that will generate the
web page at the URL /about/team . /about/index.md would map to the
/about web page. And /index.html to the site home page, i.e. / .

You can find the blog posts and news articles under the /blogPostings
folder. The team members are located under the /people folder.

In order to avoid redundant content [http://principles-wiki.net/principles:don_t_repeat_yourself], the metadata found in some markdown
files like /people is reused across the site. For instance the author
of a blog post only refers to the alias of a person. The web page for
that post will automatically retrieve the full name of that person from
their markdown file under /people.

Editorial workflow

There are two instances of the site: one is your public site and the
other a private staging site where content can be edited and preview
more freely. Each site uses a different branch in your github
repository: the live site is driven by the main branch whereas the
staging site is driven by the staging branch.

Whenever a file is modified on github the site will be republished
automatically so you can preview your changes.

Let KDL know when you want to publish your staging content to your live
site (what we call a release).

How to edit a markdown file?

As an illustration, here’s how you would edit the About page (/about):

	go to your repository on github and select the desired branch
(main is selected by default in the dropdown just above the file
list)

	browse down to /about

	click the index.md file

	you can see a basic preview of the body of the about page

	click the pencil icon on the right side of the toolbar just above the
document

	use the simple text editor to edit the front matter and body of your document

	always preview your changes before committing them to ensure they don’t disrupt the display

	add a short commit message summarising your change

	press ‘commmit’ to commit and push the change to the repository

	check on the live website after ~10 minutes

[image: ../_images/github-browse-file.svg][image: ../_images/github-edit-file.svg]

What’s a slug?

The slug [https://en.wikipedia.org/wiki/Slug_%28publishing%29] of a web page is the name it take at the end of its URL. This also correspond to the name of the file.

A good slug:

	matches the title of the page (i.e. the title field in the front-matter)

	is made of letters, numbers and hyphens, please avoid any other character

	is short yet meaningful (eliding determinants is a common practice to keep thigns short)

	never changes after publication (as this would break links and bookmarks and confuse Google Search)

For instance, an article with he following title “Why we are ready to strike: a panel of workers respond” could have this slug “ready-to-strike-public-sector-workers”.

[image: ../_images/page-slug.png]

Blog posts and News Items

The /posts folder contains one subdirectory for each main category of posts. Typically ‘blog’ and ‘news’.
The publication date of a post is determined by the date at the beginning of the file name, e.g. 2022-06-20-my-first-post.md

The part following the date is the slug.

Draft Mode

By default all blog posts and news items are ‘live’. To prevent an article
from being listed on the site while you are drafting it,
you can add the following key and value to its front-matter:

status: draft

Once the article is ready for publication, just remove that line or
change it to status: live instead. You can preview the article on
the live site at any time by directly visiting its URL (see the above
section about ‘slug’).

Images in markdown

Here is the full notation to include an image in your web page:

![ALT_TEXT]({{ "URL" | url }} "CAPTION"){.ALIGNMENT}

	ALT_TEXT: the alternative text, a short description of the image accessible to visually impaired people only

	URL: the relative address of the image file you have uploaded to the repository (typically under the assets/img folder)

	CAPTION: a short description of the image in the context of your article, this will be displayed below the image to all users

	ALIGNMENT: a class that spcify whether the image is aligned left {.media-left}, right {.media-right}, centre {.media-center} or full width {.media-full}

Here’s an example:

![A 15th-century stone manor house]({{ "/assets/img/home/Hipswell-Hall-st.jpg" | url }} "Hipswell Hall, where Alice lived with her mother
 © Suzanne Trill"){.media-left}

As illustrated above, you can use
 in the caption to break lines.

I broke a live web page!

TODO

 How to export an SVG from Miro board

Export the board as a PDF
Then use the following command to extract the SVG:

pdftocairo -svg board.pdf board.svg

Github Issues guidelines

This document is a work in progress.

https://docs.github.com/en/issues/tracking-your-work-with-issues/quickstart

1. Scope

Tickets created in Github should be for minor, low-level implementation-specific of pre-agreed components of the research software.
Anything higher-level, more major or about other components should instead be raised and discussed via the normal route with an Analyst.

Let us know if you are unsure whether an issue falls within the current agreed scope.

2. Prioritisation

We use the MOSCOW system.
https://www.agilebusiness.org/dsdm-project-framework/moscow-prioririsation.html

Priorities are negotiated based on research needs and technical feasibility / cost. KDL project analyst is ultimately responsible for them.

We generally work first on higher priorities ticket but the order may also depend on functional grouping or other technical factors.
As a rule of thumb there should be a very limited number of MUST tickets (e.g. around three) at any time in order to keep the work focused and agile.
It is best to be conservative with the priorities and the number of open tickets.

3. New ticket

A KDL member or a member of the research team can open a new ticket. Please provide at a minimum:

	a short but clear and unique title (summarise the issue in less than 10 words)

	a specific description which is precise enough, the more details the better (e.g. screenshots, links, inputs, outputs, …)

	description should indicate the screen/url of the user interface and name the interface elements it refers to

	for bugs, please provide step by step description of the actions to systematically reproduce the error. Preferably using bullet points

	apply a label saying whether this is a bug or an enhancement

	assign to agreed default person person at KDL (analyst or developer)

It is best to break things into a small unit of work. So each ticket correspond to a single bug or a single atomic feature request.
https://docs.github.com/en/issues/planning-and-tracking-with-projects/learning-about-projects/best-practices-for-projects#break-down-large-issues-into-smaller-issues

Larger features should be discussed with analyst directly via other channels than github.

4. Volume

Although we encourage you to always report bugs, please be mindful of number of open tickets in system.
It is best to keep the number of open feature requests (i.e. enhancement) limited at any time to keep our focus, avoid unmanageable backlog or feature-creep.

The worflow is iterative and only a few tickets can be done in one development iteration /increment. More features can be added in the next cycle.

5. Rest of the workflow

The comment area on the tickets is very useful to keep all questions and communication on topic, responsive and descriptive.

To draw the attention of someone (e.g. asking them a direct question), prefix their username with @ in the comment. Github will notify them.
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues#efficient-communication

When a ticket has been implemented (e.g. fixed and issue or added a new feature), KDL will close the ticket and leave a short message with an explanation of what has been done.

Research team can then review the work and re-open the ticket if it isn’t satisfied with the resolution.

Github starter page

Some of the research data and project web site content is hosted in a
Github file repository managed by KDL (we’ll send you the link). The
repository is a dedicated cloud space for your file which can be
collaboratively edited by KDL and the research team. All changes are
versioned, all files are public.

Github is the cloud repository provider. And Git is the versioning
system it is based on.

How do I access the repository?

If you only need to browse the files, you can do so without an account,
directly on the github.com website.

First you need to create github account [https://github.com/signup] if you haven’t one yet. Then
let KDL know what your account name/id is so we can give you access to
the repository.

How can I interact with the files on github?

Listed below are four options, ranging from the most straightforward to
the most advanced. If you are new to github, try option 1 first and move
to option 2 it is too limiting. If you have experience with coding
environments, option 4 might be preferred.

1. Github.com website

The github.com site lets you search, browse and edit html, markdown or
json files and save your changes immediatelly. You don’t need to
download anything and the changes occur directly on the cloud.

The editorial documentation contains an illustrative walkthrough of the
editorial workflow on Github.

2. Desktop Git clients

In this option and the following ones you copy the cloud repository
locally (i.e. on your machine), modify the files with the editors of
your choice, and share the modified files back to the cloud.

The git editorial workflow works like this:

	clone: a one-off initial download of a github repository to your
machine

	pull: any subsequent download (to receive changes made by others)

	edit: the files using your favourite desktop editors

	commit: to save change files to your local copy of the repository

	push: to upload your local repository back to the cloud

	iterate from step 2

Steps 1, 2, 4 and 5 can be done with one of those free desktop Git
applications:

	https://desktop.github.com/

	https://www.sourcetreeapp.com/

3. Command line / Terminal

If you are confident with the terminal, the git application [https://github.com/git-guides/install-git] is an
efficient command line tool to do steps 1, 2, 4 and 5.

4. Integrated development environemnt (IDE)

An IDE is a desktop application dedicated to code development. It
integrates git operations and file editing under the same environment.
It is very convenient but require some initial set up and is typically
filled with distracting features you’ll rarely use.

Recommended free IDEs:

	Visual Studio Code [https://code.visualstudio.com/]

	PyCharm Community Edition [https://www.jetbrains.com/pycharm/]

Web analytics

We are currently trialing GoAccess [https://goaccess.io/] as a prelacement for Google Analytics.

GoAccess works entirely locally. Currently used by Radical Translation (and soon Alice Thornton).

Summary

The following setup:

	installs GoAccess on the web server

	
	every hour a root cron job:
	
	extracts data from the latest live TrafficServer access log

	adds them to the GoAccess database (under /project/webroot/liv/logs/trafficserver/goaccess)

	saves a static html report in the staging site (X-stg.kdl.kcl.ac.uk/webstats.html) available to analysts & partners

Advantages:

	no running services

	no dependencies to third-party cloud service

	more privacy-friendly than Google Analytics

	directly visible by partners & analysts through our platform (we don’t need to dev/UI/UX/sysadmin to browse traffic stats)

Limitations

	GoAccess stats are very basic compared to Google Analytics

	Not sure how interoperable GoAccess DB is? Could we export to other platform? Do we need to keep traffic server logs?

Installation instructions

Instructions tested on Ubuntu 20.04 with our default nginx setup

	Download & install latest stable version using the Official Ubuntu Repository (because default distribution package is too old)

	elevate to root using ksu

	run each provided line one by one (remove ‘sudo’ keyword before running them)

	before running apt-get update, do chmod ugo+r /usr/share/keyrings/goaccess.gpg

	Check goaccess is install by running goaccess –version (should be 1.6+)

	vi /etc/goaccess/goaccess.conf

	uncomment line 13: time-format %H:%M:%S

	uncomment line 36: date-format %d/%b/%Y

	Under ‘Log Format Options’ section, add: log-format %h %^[%d:%t %^] “%m %U” %s %b “%R” “%u”

	http-protocol yes -> http-protocol false

	#browser-file -> browsers-file /etc/goaccess/browsers.list

	ignore-crawlers false -> ignore-crawlers true

	AFTER ignore-status 502, ADD ignore-status 301 AND ignore-status 302

	mkdir /project/webroot/liv/logs/trafficserver/goaccess

	goaccess /project/webroot/liv/logs/trafficserver/access.log -a –persist –restore –db-path=/project/webroot/liv/logs/trafficserver/goaccess -o /dev/null

	create cron job to persist web logs to the goaccess db

	crontab -e

	ADD: 0 * * * * goaccess /project/webroot/liv/logs/trafficserver/access.log -a –persist –restore –db-path=/project/webroot/liv/logs/trafficserver/goaccess -o /project/webroot/stg/github/frontend/_site/webstats.html && chmod ugo+rw /project/webroot/stg/github/frontend/_site/webstats.html

View web stats

From command line:

	ssh into the server

	elevate to root with ksu

	goaccess –restore –db-path=/project/webroot/liv/logs/trafficserver/goaccess

Alternatively From the staging site: go to /webstats.html

TODO

	Analysis: how can we do time slice, look at bounce rates, entry/exit points, navifation flow?

	Make sure size of GoAccess DB remains small enough over longer period of time

Development

Code quality

	Conventional commits [https://www.conventionalcommits.org/]: provide a standardised format to writting commit messages
that follow a specific format. It helps to improve readability and consistency of
commit messages/history. This enhances collaboration and facilitates automated
processes such as generating release logs, leading to better project management
overall. commitizen [https://commitizen-tools.github.io/commitizen/] is a command-line tool that implements conventional commits and
can help with adhering to the conventional commits standard.

	Pre-commit hooks: enable automated checks that run before committing code, helping
ensure code quality and consistency. They can perform tasks such as running tests,
linting code, and enforcing coding standards. For Python projects consider using
pre-commit [https://www.conventionalcommits.org/]; for JavaScript/Node projects consider using simple-git-hooks [https://github.com/toplenboren/simple-git-hooks].

Formatters / linters

Formatters and linters are tools used in software development to improve code quality
and maintain consistent coding standards. Formatters automatically modify code to adhere
to a specific style guide, ensuring uniformity in formatting, such as indentation, line
spacing, and code layout. Linters analyze code for potential errors, bugs, or deviations
from best practices. They provide warnings or errors to help identify and correct issues
related to code quality, style, or potential vulnerabilities.

	For Python projects use at least:

	black [https://github.com/psf/black]

	isort [https://pycqa.github.io/isort/]

	For JavaScript projects use at least:

	ESLint [https://eslint.org/]

	Prettier [https://prettier.io/]

Release management

Release management using semantic versioning [https://semver.org/] is a standardised approach to version
numbering in software development. It involves assigning version numbers with specific
meanings to indicate the nature of changes made in a release.

Semantic versioning consists of three parts: major version, minor version, and patch
version. Incrementing the major version signifies backward-incompatible changes, the
minor version indicates the addition of new features while maintaining backward
compatibility, and the patch version represents backward-compatible bug fixes and small
updates.

Besides commitizen [https://commitizen-tools.github.io/commitizen/], for JavaScript projects, release-it [https://github.com/release-it/release-it] is also available to help with
release management.

Keeping a changelog [https://keepachangelog.com/] is an essential aspect of release management using semantic
versioning. It involves documenting the changes, enhancements, and bug fixes made in
each release, providing a comprehensive record of the project’s evolution over time. A
well-maintained changelog aids in transparent communication, facilitates collaboration,
and helps users understand the modifications introduced in different versions of a
project.

Both commitizen [https://commitizen-tools.github.io/commitizen/] and release-it [https://github.com/release-it/release-it] have options to automatically generate a changelog
when using conventional commits.

How we work

	Agile methodology, with 2 week timeboxes/sprints

	ClickUp for project management

	Slack for daily communication

	Teams for online meetings

	GitHub for version control

Handbook

	How we work

	Development
	Code quality

	Release management

 _static/plus.png

_static/file.png

_images/page-slug.png
O @ https://www.theguardian.com/commentisfree/2022/jun/23/ready-to-strike-public-sector-workers & .m SI ug

The panel

Industrial action

Why we are ready to strike: a panel of
workers respond <-Title
Hannah David, Sarah Hallett, Mike Kemp,
Paramyjit Ahluwalia, Phil Kemp and Nicola
Jukes

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Vault 101

 		
 Tutorials

 		
 How-to guides

 		
 Cookies disclaimer

 		
 Wait for Elasticsearch to be ready in Docker/Compose

 		
 Reference guides

 		
 Hydra/JAMStack

 		
 Modules

 		
 Tooling

 		
 Frontend module

 		
 Useful web map service providers for Leaflet.js and OpenLayers

 		
 Option 1 - OpenStreetMap

 		
 Option 2 - ArcServer

 		
 Explanation

 		
 Changelog

 		
 [Unreleased] - yyyy-mm-dd

 		
 Added

